The projections of the lateral reticular nucleus (LRN) to the cerebellar nuclei were studied using the retrograde axonal transport of tetramethyl rhodamine dextran amine (10% solution in 0.01 M neutral phosphate buffer) in 19 adult Wistar strain rats. The cerebellar nuclei receive topographically organized projections from the LRN. The projections are bilateral with an ipsilateral predominance and they are symmetrical. The contralateral component is progressively larger for projections to the nuclei interpositalis, to the nucleus lateralis and to the nucleus medialis. The projections to the various cerebellar nuclei arise from rostrocaudally oriented columns of neurons located in different (partly overlapping) areas of the magnocellular division of the LRN. The nucleus lateralis receives terminals from the dorsomedial area (mainly from the rostral level of the LRN), the nuclei interpositalis from the dorsolateral area (mainly from the central level) and the nucleus medialis from the intermedioventral area (mainly from the caudal level). Afferent fibres from the small subtrigeminal division were traced to the three cerebellar nuclei and from the parvocellular division to the nuclei interpositalis and medialis. The density of the projections from the LRN to the nuclei interpositalis increases progressively with the shift of the terminal field from the rostrolateral to the caudomedial part of the nucleus. The projections to the nucleus lateralis reach principally the dorsolateral hump, whereas only a few neurons project to the other divisions (parvo- and magnocellular). The projections to the various regions of the nucleus medialis show different densities. The highest density was found for projections to the caudal part, in particular to the dorsolateral protuberance and to the ventrolateral area of the middle division. Conversely, a low density of projections was found for the other areas of the middle division. The regions of the magnocellular division of the LRN which project to the nuclei lateralis (and are thus related to the cerebral cortex), interpositalis (related to the red nucleus) and medialis (related to the spinal cord) also receive afferent terminals from the cerebral cortex, the red nucleus and the spinal cord respectively, in addition to various afferent inputs. Thus, each of these areas is apparently concerned with integrating some spinal and supraspinal information in reverberating circuits.