We describe a Triton-insoluble cytoskeletal fraction extracted from cerebral cortex of young rats retaining an endogenous Ca(2+)-mediated mechanism acting in vitro on Ca2+/calmodulin-dependent protein kinase II (CaM-KII) activity and on phosphorylation and proteolysis of the 150 kDa neurofilament subunit (NF-M), alpha and beta tubulin. Exogenous Ca2+ induced a 70% decrease in the in vitro phosphorylation of the NF-M and tubulins and a 30-50% decrease in the total amount of these proteins. However, when calpastatin was added basal phosphorylation and NF-M and tubulin content were recovered. Furthermore, exogenous Ca2+/calmodulin induced increased in vitro phosphorylation of the cytoskeletal proteins and CaM-KII activity only in the presence of calpastatin, suggesting the presence of Ca(2+)-induced calpain-mediated proteolysis. This fraction could be an interesting model to further studies concerning the in vitro effects of Ca(2+)-mediated protein kinases and proteases associated with the cytoskeletal fraction.