Microfilaments in epithelial cells are important for the structural and functional integrity of tight junctions. In the present study, we examined the relationship between microfilaments and tight junctions in hepatocytes of rat liver following common bile duct ligation (CBDL) for up to 2 weeks. Actin filaments and tight junctions were studied by fluorescence microscopy using 7-nitrobenzene-2-oxa-1,3-diazole phallacidin (NBD-ph) and an anti-ZO-1 antibody, respectively. Double-stained sections were examined with confocal laser scanning microscopy (CLSM). Electron microscopy was applied for the assessment of structural alterations in microfilaments and in tight junctions with detergent-extraction and freeze-fracture preparations. Our results showed that F-actin was present at the entire plasma membrane of hepatocytes in control liver, whereas CBDL increased the amount of F-actin mainly at the bile canalicular and lateral plasma membranes. Simultaneously, the immunofluorescence of ZO-1 underwent striking changes, i.e., from a uniform to an irregular staining pattern with various fluorescence intensities. CLSM demonstrated a colocalization of ZO-1 and F-actin in control liver and its deterioration in CBDL liver. Electron microscopy showed marked alterations of microfilaments and tight junctions due to CBDL. It is concluded that actin filaments are intimately associated with tight junctions in normal hepatocytes. CBDL impairs this association by progressively diminishing the structural interaction between F-actin and ZO-1, which may in turn lead to functional disturbances of tight junctions.