Purpose: To evaluate the possibility of cancer gene therapy by the gene delivery of chemokine, the effects of human macrophage inflammatory protein 1 alpha (hu-MIP-1 alpha), murine-macrophage inflammatory protein 1 alpha (mu-MIP-1 alpha), and human-interleukin 8 (hu-IL-8) on tumor progression and immunization were studied.
Methods: Cachexia-inducing and highly tumorigenic adenocarcinoma cells (cell line colon 26, clone 20) were transfected with either a control plasmid, hu-MIP-1 alpha, mu-MIP-1 alpha, or hu-IL-8 expression vector. The production of hu-MIP-1 alpha reached > 1.5 ng/ml in vitro when transfectant cells were cultured at a cell density of 2 x 10(5) cells in 7 ml for 3 days. Immunocompetent BALB/c mice were inoculated into the footpad with the tumor cells, and then primary tumor growth, morphological analyses, and tumor immunogenicity were studied.
Results: The secretion of hu-MIP-1 alpha, mu-MIP-1 alpha, and hu-IL-8 did not affect the growth rate in vitro. Reduced tumorigenicities in vivo were observed in transfected cells with hu-MIP-1 alpha and mu-MIP-1 alpha. Morphologic observation of the site of inoculation of cells transfected with hu-MIP-1 alpha showed infiltration of macrophages and neutrophils on the 5th day after the inoculation. Mice that had rejected cells transfected with hu-MIP-1 alpha gene were immune to a subsequent challenge with the parental cells.
Conclusions: The rejection of the cells depends on cytolysis and generates potent and long lasting antitumor immunity. These data suggest that tumor cells transfected with the MIP-1 alpha gene might be useful as an effective therapy for the treatment of certain tumors.