Progression of astrocytes from a benign to a malignant phenotype is accompanied by a change in the RNA processing of the fibroblast growth factor receptor 1 (FGFR-1) gene. The level of a high affinity form of the FGFR-1 is dramatically elevated as a result of alpha-exon skipping during RNA splicing. In this paper we have been able to duplicate this tumor-specific RNA processing pathway by transfection of a chimeric minigene containing a 4-kilobase fragment of the human FGFR-1 gene (including the alpha-exon) into a variety of cell lines. In a transfected human astrocytoma cell line, alpha-exon skipping was consistently observed for RNA transcripts derived from both the chimeric minigene and endogenous gene expression. This exon skipping phenotype was dependent on the size of the flanking intron as deletions which reduced the introns to less than approximately 350 base pairs resulted in enhanced alpha-exon inclusion. Increased exon inclusion was not sequence-specific as exon skipping could be restored with insertion of nonspecific sequence. Cell-specific exon recognition was maintained with a 375-nucleotide sequence inclusive and flanking the alpha-exon, provided that intron size was maintained. These results identify the minimal cis-regulatory sequence requirements for exclusion of FGFR-1 alpha-exon in astrocytomas.