Leptin, encoded for by the mouse ob gene, regulates feeding behavior and energy metabolism. Its receptor (Ob-R) is encoded by the mouse diabetic (db) gene and is mutated in the db/db mouse so that it lacks the cytoplasmic domain. We show that the full-length leptin receptor (Ob-Rb), which is believed to transmit the leptin signal, is expressed in pancreatic islets of ob/ob and wild-type mice, as well as in hypothalamus, liver, kidney, spleen, and heart. Recombinant leptin inhibited basal insulin release in the perfused pancreas preparation from ob/ob mice but not in that from Zucker fa/fa rats. Leptin (1-100 nmol/l) also produced a dose-dependent inhibition of glucose-stimulated insulin secretion by isolated islets from ob/ob mice. In contrast, leptin at maximum effective concentration (100 nmol/l) did not inhibit glucose-stimulated insulin secretion by islets from db/db mice. These results provide evidence that a functional leptin receptor is present in pancreatic islets and suggest that leptin overproduction, particularly from abdominal adipose tissue, may modify directly both basal and glucose-stimulated insulin secretion.