The present work was undertaken to study the mechanism by which okadaic acid (OA), an inhibitor of protein phosphatases 1 and 2A, stimulates carnitine palmitoyltransferase I (CPT-I) in isolated rat hepatocytes [Guzmán, Kolodziej, Caldwell, Costorphine and Zammit (1994) Biochem. J. 300, 693-699]. The OA-induced stimulation of CPT-I was abolished by the general protein kinase inhibitor K-252a as well as by KN-62, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II (Ca2+/CM-PKII). However, neither the protein kinase C-specific inhibitor bisindolylmaleimide nor the protein kinase A/protein kinase C inhibitor H-7 was able to prevent the OA-induced stimulation of CPT-I. Hepatocyte-shrinkage-induced stimulation of CPT-I as well as OA-induced hepatocyte shrinkage was prevented by KN-62. KN-62 also antagonized the OA-enhanced release of lactate dehydrogenase from digitonin-permeabilized hepatocytes. Exposure of 32P-labelled hepatocytes to OA increased the degree of phosphorylation of Ca2+/CM-PKII, as immunoprecipitated by a monoclonal antibody raised against the alpha-subunit of rat brain kinase. This effect of OA was also antagonized by KN-62. The results thus indicate that the OA-dependent stimulation of CPT-I may be mediated (at least in part) by increased phosphorylation and subsequent activation of Ca2+/CM-PKII.