The reactor accident at Chernobyl in 1986 necessitated a massive environmental cleanup that involved over 600,000 workers from all 15 Republics of the former Soviet Union. To determine whether the whole-body radiation received by workers in the course of these decontamination activities resulted in a detectable biological response, over 1,500 blood samples were obtained from cleanup workers sent from two Baltic countries, Estonia and Latvia. Here we report the results of studies of biodosimetry using the glycophorin A (GPA) locus in vivo somatic cell mutation assay applied to 734 blood samples from these workers, to 51 control samples from unexposed Baltic populations and to 94 samples from historical U.S. controls. The data reveal inconsistent evidence that the protracted radiation exposures received by these workers resulted in a significant dose-associated increase in GPA locus mutations compared with the controls. Taken together, these data suggest that the average radiation exposure to these workers does not greatly exceed 10 cGy, the minimum levels at which radiation effects might be detectable by the assay. Although the protracted nature of the exposure may have reduced the efficiency of induction of GPA locus mutations, it is likely that the estimated physical doses for these cleanup worker populations (median reported dose 9.5 cGy) were too low to result in radiation damage to erythroid stem cells that can be detected reliably by this method.