The movement protein (MP) gene of brome mosaic virus (BMV) was precisely replaced with that of cucumber mosaic virus (CMV). Infectivity tests of the chimeric BMV on Chenopodium quinoa, a permissive host for cell-to-cell movement of both BMV and CMV, showed that the chimeric BMV failed to move from cell to cell even though it replicated in protoplasts. A spontaneous mutant of the chimeric BMV that displayed cell-to-cell movement was subsequently obtained from a local lesion during one of the experiments. A cloned cDNA representing the genomic RNA encoding the MP of the chimeric BMV mutant was analyzed and found to contain a mutation in the CMV MP gene resulting in deletion of the C-terminal 33 amino acids of the MP. Directed mutagenesis of the CMV MP gene showed that the C-terminal deletion was responsible for the movement capability of the mutant. When the mutation was introduced into CMV, the CMV mutant moved from cell to cell in C. quinoa, though the movement was less efficient than that of the wild-type CMV. These results indicate that the CMV MP, except the C-terminal 33 amino acids, potentiates cell-to-cell movement of both BMV and CMV in C. quinoa. In addition, since C. quinoa is a common host for both BMV and CMV, these results suggest that the CMV MP has specificity for the viral genomes during cell-to-cell movement of the virus and that the C-terminal 33 amino acids of the CMV MP are involved in that specificity.