Both SH2 domains are involved in interaction of SHP-1 with the epidermal growth factor receptor but cannot confer receptor-directed activity to SHP-1/SHP-2 chimera

J Biol Chem. 1997 Feb 28;272(9):5966-73. doi: 10.1074/jbc.272.9.5966.

Abstract

The previously demonstrated functional and physical interaction of the SH2 domain protein-tyrosine phosphatase SHP-1 with the epidermal growth factor (EGF) receptor (Tomic, S., Greiser, U., Lammers, R., Kharitonenkov, A., Imyanitov, E., Ullrich, A., and Böhmer, F. D. (1995) J. Biol. Chem. 270, 21277-21284) was investigated with respect to the involved structural elements of SHP-1. Various mutants of SHP-1 were transiently expressed in 293 or COS-7 cells and analyzed for their capacity to associate with immobilized autophosphorylated EGF receptor in vitro and to dephosphorylate coexpressed EGF receptor in intact cells. Inactivating point mutation of the C-terminal SH2 domain reduced the association weakly, point mutation of the N-terminal SH2 domain reduced association strongly and the respective double mutation abolished association totally. The capacity of SHP-1 to dephosphorylate coexpressed EGF receptor was impaired by all point mutations. Truncation of the N-terminal or of both SH2 domains strongly reduced or abolished association, respectively, but the truncated SHP-1 derivatives still dephosphorylated coexpressed EGF receptor effectively. Various chimeric protein-tyrosine phosphatases constructed from SHP-1 and the closely homologous SHP-2 dephosphorylated the EGF receptor when they contained the catalytic domain of SHP-1. As native SHP-2, the chimera lacked activity toward the receptor when they contained the catalytic domain of SHP-2, despite their capacity to associate with the receptor and to dephosphorylate an artificial phosphopeptide. We conclude that the differential interaction of SHP-1 and SHP-2 with the EGF receptor is due to the specificity of the respective catalytic domains rather than to the specificity of the SH2 domains. Functional interaction of native SHP-1 with the EGF receptor requires association mediated by both SH2 domains.

MeSH terms

  • Animals
  • COS Cells
  • Chromosome Mapping
  • ErbB Receptors / metabolism*
  • Humans
  • Intracellular Signaling Peptides and Proteins
  • Mutagenesis
  • Phosphorylation
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6
  • Protein Tyrosine Phosphatases / genetics*
  • Protein Tyrosine Phosphatases / metabolism
  • Recombinant Fusion Proteins / genetics*
  • Recombinant Fusion Proteins / metabolism
  • SH2 Domain-Containing Protein Tyrosine Phosphatases
  • Transfection
  • src Homology Domains*

Substances

  • Intracellular Signaling Peptides and Proteins
  • Recombinant Fusion Proteins
  • ErbB Receptors
  • PTPN11 protein, human
  • PTPN6 protein, human
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6
  • Protein Tyrosine Phosphatases
  • SH2 Domain-Containing Protein Tyrosine Phosphatases