Similar to other G protein-coupled receptors, the visual receptor, rhodopsin, is phosphorylated by both a substrate-regulated kinase, rhodopsin kinase, and a second messenger-regulated kinase, protein kinase C. In the present study, the extent of involvement of protein kinase C in the light-dependent phosphorylation of rhodopsin in intact retinas was assessed using a specific activator (phorbol ester) and specific inhibitor (calphostin C) of protein kinase C. Kinetic analysis of rhodopsin phosphorylation following different illumination conditions revealed that hyperactivation of protein kinase C with phorbol ester resulted in a relative increase in rhodopsin phosphorylation that peaked 10-15 min after the onset of illumination. Following this period, the rate of rhodopsin dephosphorylation was increased in the phorbol ester-treated retinas, so that by about 30 min the amount of phosphorylation was similar to that in control retinas. Treatment of retinas with calphostin C, a potent regulatory domain-directed inhibitor of protein kinase C, resulted in an approximately 50% reduction in the light-dependent phosphorylation of rhodopsin. This inhibitor had no effect on the activity of rhodopsin kinase in vitro. Last, we show that frog rhodopsin is phosphorylated in vitro by protein kinase C from frog rod outer segments, indicating that this kinase could directly modulate rhodopsin in vivo. In conclusion, the present results reveal that the kinetics of rhodopsin phosphorylation/dephosphorylation differ markedly, depending on whether protein kinase C or rhodopsin kinase activity dominates, and that, under the conditions studied, protein kinase C contributes to approximately half of the phosphorylation of rhodopsin in intact frog retinas.