Expression of matrix metalloproteinase-9 mRNA in osteoarthritic and normal cartilage was analyzed using reverse transcription-polymerase chain reaction and in situ hybridization. Fifty-four osteoarthritic cartilage samples were obtained from 24 patients undergoing total knee arthroplasty. Sixteen normal cartilage samples were obtained from non-osteoarthritic knees of four autopsy cases. With normal cartilage, reverse transcription-polymerase chain reaction analysis for matrix metalloproteinase-9 mRNA showed that chondrocytes exhibited only a trace signal. In analysis of osteoarthritic cartilage, chondrocytes of moderately and severely fibrillated cartilage exhibited a 73-fold and 110-fold increase in matrix metalloproteinase-9 mRNA signal, respectively, relative to normal cartilage. Chondrocytes of nonfibrillated osteoarthritic cartilage exhibited a 6-fold increase (p < 0.02) in matrix metalloproteinase-9 mRNA signal relative to normal cartilage. Analysis of matrix metalloproteinase-9 mRNA expression in fresh-frozen sections of normal and osteoarthritic cartilage by in situ hybridization confirmed these results. This study showed that reverse transcription-polymerase chain reaction provides a sensitive index of mRNA levels in normal and osteoarthritic cartilage samples and suggests that increased expression of matrix metalloproteinase-9 precedes fibrillation of cartilage in the development of osteoarthritis.