In the isolated goldfish retina, 700 nm background illumination increases the horizontal cell receptive field size, as measured with 565 nm slits of light, but decreases the receptive field size, when measured with 660 nm slits. These background-induced changes in receptive field size are absent when the depolarizing responses in bi- and triphasic horizontal cells are blocked by lowering the [Ca2+] in the Ringer's solution from 1.0 to 0.1 mM. These results cannot be explained by the linear properties of the horizontal cell layers, nor by slow adaptational processes, but are consistent with the concept that feedback from horizontal cells to cones modifies the horizontal cell receptive field properties.