Peripheral blood T lymphocytes require two signals to enter and progress along the cell cycle from their natural quiescent state. The first activation signal is provided by the stimulation through the T cell receptor, which induces the synthesis of cyclins and the expression of the high affinity interleukin-2 receptor. The second signal, required to enter the S phase, is generated upon binding of interleukin-2 to the high affinity alphabetagamma interleukin-2 receptor. However, resting T cells already express intermediate affinity betagamma interleukin-2 receptors. As shown here, T cell stimulation through intermediate affinity receptors is capable of inducing cell rescue from the apoptosis suffered in the absence of stimulation. Characterization of the signaling pathways utilized by betagamma interleukin-2 receptors in resting T cells, indicated that pp56(lck), but not Jak1 or Jak3, is activated upon receptor triggering. Compelling evidence is presented indicating that phosphatidylinositol 3-kinase associates with the intermediate affinity interleukin-2 receptor and is activated upon interleukin-2 addition. Bcl-xL gene was also found to be induced upon betagamma interleukin-2 receptor stimulation. Finally, pharmacological inhibition of phosphatidylinositol 3-kinase blocked both interleukin-2-mediated bcl-xL induction and cell survival. We conclude that betagamma interleukin-2 receptor mediates T-cell survival via a phosphatidylinositol 3-kinase-dependent pathway, possibly involving pp56(lck) and bcl-xL as upstream and downstream effectors, respectively.