Resistance to apoptosis in CTLL-2 cells constitutively expressing c-Myb is associated with induction of BCL-2 expression and Myb-dependent regulation of bcl-2 promoter activity

Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3296-301. doi: 10.1073/pnas.94.7.3296.

Abstract

c-Myb, the cellular homologue of the transforming gene of the avian myeloblastosis virus, is preferentially expressed in all hematopoietic lineages, including T and B lymphocyte lineages. In T lymphocytes, c-Myb expression appears to be required for cell cycle progression and proliferation. To further investigate the role of c-Myb in T cell proliferation and survival, interleukin (IL) 2-dependent CTLL-2 cells were transfected with a constitutively active c-myb or with a c-myb antisense construct able to down-regulate endogenous Myb levels, and the transfectants were assessed for proliferation and survival in low concentrations of IL-2 and for susceptibility to dexamethasone-induced apoptosis. Compared with control cells, CTLL-2 cells constitutively expressing c-Myb proliferate in low concentrations of IL-2 and are less susceptible to apoptosis induced by IL-2 deprivation or treatment with dexamethasone. In contrast, cells transfected with an antisense c-myb construct do not proliferate in low concentrations of IL-2 and undergo apoptosis upon IL-2 deprivation or dexamethasone treatment more rapidly than parental cells. Overexpression of c-Myb was accompanied by up-regulation of BCL-2 expression. In transient transfection assays, the murine bcl-2 promoter was efficiently transactivated by c-Myb, but such effect was observed also in cells transfected with a DNA binding-deficient c-myb construct. Moreover, in gel retardation assays, a 38-bp oligomer in the shortest bcl-2 promoter segment regulated by c-Myb formed a specific complex with nuclear extracts from c-Myb-transfected CTLL-2 cells. Thus, these results strongly suggest that c-Myb, in addition to regulating T cell proliferation, protects T lymphocytes from apoptosis by induction of BCL-2 expression, which involves a c-Myb-dependent mechanism of promoter regulation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Apoptosis / genetics*
  • Cell Line
  • Chloramphenicol O-Acetyltransferase / genetics
  • Cricetinae
  • Dexamethasone / pharmacology
  • Gene Expression Regulation / genetics*
  • Genes, bcl-2*
  • Interleukin-2 / metabolism
  • Oligonucleotides, Antisense
  • Oncogenes*
  • Promoter Regions, Genetic*
  • Signal Transduction
  • Transcriptional Activation
  • Transfection

Substances

  • Interleukin-2
  • Oligonucleotides, Antisense
  • Dexamethasone
  • Chloramphenicol O-Acetyltransferase