Knobs at the surface of erythrocytes infected with Plasmodium falciparum have been proposed to be important in adherence of these cells to the vascular endothelium. This structure contains the knob-associated histidine-rich protein (KAHRP) and the adhesion receptor P. falciparum erythrocyte membrane protein 1. We have disrupted the gene encoding KAHRP and show that it is essential for knob formation. Knob-transfectants adhere to CD36 in static assays; when tested under flow conditions that mimic those of postcapillary venules, however, the binding to CD36 was dramatically reduced. These data suggest that knobs on P. falciparum-infected erythrocytes exert an important influence on adherence of parasitized-erythrocytes to microvascular endothelium, an important process in the pathogenesis of P. falciparum infections.