The folding of a polypeptide chain of a relatively large globular protein into its unique three-dimensional and functionally active structure occurs via folding intermediates. These partly folded states of proteins are difficult to characterize, because they are usually short lived or exist as a distribution of possible conformers. A variety of experimental techniques and approaches have been utilized in recent years in numerous laboratories for characterizing folding intermediates that occur at equilibrium, including spectroscopic techniques, solution X-ray scattering, calorimetry and gel filtration chromatography, as well as genetic methods and theoretical calculations. In this review, we focus on the use of proteolytic enzymes as probes of the structure and dynamics of folding intermediates and we show that this simple biochemical technique can provide useful information, complementing that obtained by other commonly used techniques and approaches. The key result of the proteolysis experiments is that partly folded states (molten globules) of proteins can be sufficiently rigid to prevent extensive proteolysis and appear to maintain significant native-like structure.