The ATP-sensitive K+ current (I(K,ATP)), the inward rectifier K+ current (I(K1)), and the acetylcholine-activated K+ current (I(K,ACh)) were recorded in fetal, neonatal, and adult rat ventricular myocytes using the patch-clamp technique. The density (pA/pF) of I(K1) increased from gestation day 10 through neonatal day 1 and then decreased after neonatal day 30. The density of I(K,ATP) activated maximally by metabolic inhibition changed in parallel with the I(K1) density, and the density of I(K,ATP) channel distribution was 1.3 times higher than that of I(K1) throughout the development. We failed to observe developmental changes in the single-channel conductance and the mean open time of I(K1) and I(K,ATP) channels. However, the open probability of the I(K,ATP) channel was lower in fetuses, and the sensitivity to ATP was highest in 1-day neonates. I(K,ACh) were present in the ventricle at all stages of development but at a much lower density than in atrium. The relationship between the resting membrane potential and the development of the inwardly rectifying K-channel family is discussed.