The human y1 and y5 receptor genes are transcribed in opposite directions from a common promoter region on chromosome 4q31-q32. One of the alternately spliced 5' exons of the y1 receptor gene (1C) is also an integral part of the coding region of a novel neuropeptide Y receptor, Y5. Exon 1C of the y1 receptor gene, if translated from the opposite strand, encodes sequences corresponding to the large third intracellular loop of the Y5 receptor. The close proximity of the two neuropeptide Y receptor genes suggests that they have evolved from a gene duplication event with the small intron interrupting the coding sequence of the y1 gene being converted into a functional sequence within the y5 gene, while the reverse complementary sequence was utilized as an alternatively spliced 5' exon for the y1 gene. The transcription of both genes from opposite strands of the same DNA sequence suggests that transcriptional activation of one will have an effect on the regulation of gene expression of the other. As both Y1 and Y5 receptors are thought to play an important role in the regulation of food intake, coordinate expression of their specific genes may be important in the modulation of NPY activity.