We have compared the ex vivo antimalarial activity of 12 new quinoline di-Mannich base compounds containing the 7-dichloroquinoline or 7-trifluoromethylquinoline nucleus with amodiaquine, chloroquine, and pyronaridine using the Saimiri-bioassay model. Each compound was administered orally (30 mg/kg of body weight) to three or more noninfected Saimiri sciureus monkeys, and serum samples were collected at various times after drug administration and serially diluted with drug-free (control) serum. In vitro activity against the multidrug-resistant K1 isolate of Plasmodium falciparum was determined in serum samples by measuring the maximum inhibitory dilution at which the treated monkey serum inhibited schizont maturation in vitro. Of the 12 Mannich bases tested, 8 were associated with levels of ex vivo antimalarial activity in serum greater than those of amodiaquine, chloroquine, or pyronaridine 1 to 7 days after drug administration. Further studies were carried out with four of these compounds, and the results showed that the areas under the serum drug concentration-time curves for the four compounds were between 7- and 26-fold greater than that obtained for pyronaridine. Activity against four multidrug-resistant strains of P. falciparum was also much greater in serum samples collected from monkeys after administration of these four compounds than in serum samples collected after administration of pyronaridine or chloroquine. These findings suggest that these four quinoline Mannich base compounds possess a very marked and prolonged antimalarial activity and that further studies should be performed to determine their value as antimalarial drugs.