The HIV-1 envelope subunit gp41 plays a role in viral entry by initiating fusion of the viral and cellular membranes. A chimeric molecule was constructed centered on the ectodomain of gp41 without the fusion peptide, with a trimeric isoleucine zipper derived from GCN4 (pIIGCN4) on the N terminus and part of the trimeric coiled coil of the influenza virus hemagglutinin (HA) HA2 on the C terminus. The chimera pII-41-HA was overexpressed as inclusion bodies in bacteria and refolded to soluble aggregates that became monodisperse after treatment with protease. Either trypsin or proteinase K, used previously to define a protease-resistant core of recombinant gp41 [Lu, M., Blacklow, S. C. & Kim, P. S. (1995) Nat. Struct. Biol. 2, 1075-1082], removed about 20-30 residues from the center of gp41 and all or most of the HA2 segment. Evidence is presented that the resulting soluble chimera, retaining the pIIGCN4 coiled coil at the N terminus, is an oligomeric highly alpha-helical rod about 130 A long that crystallizes. The chimeric molecule is recognized by the Fab fragments of mAbs specific for folded gp41. A similar chimera was assembled from the two halves of the molecule expressed separately in different bacteria and refolded together. Crystals from the smallest chimera diffract x-rays to 2.6-A resolution.