In order to elucidate the biochemical mechanisms by which the universal cyclin kinase inhibitor p27Kip1 regulates cell cycle progression in human breast cancer cells, a recombinant adenovirus expressing human p27 was constructed (Adp27). Upon infection of human breast cancer cells MDA-MB-231 and MCF-7 with Adp27, a high level of p27 expression was observed, and this resulted in a marked decrease in the proportion of cells in S-phase. In multiple cell lines, comparison of the cytotoxicity of Adp27 with another adenovirus vector expressing the related universal cyclin kinase inhibitor WAF1/Cip1 (AdWAF1), showed Adp27 to be markedly more (up to 56-fold) toxic than AdWAF1. DNA histograms showed Adp27 to cause a G1/S arrest at lower viral doses than AdWAF1. Analysis of cyclin dependent kinase activity following Adp27 infections showed decreased Cdk2 and cyclin B1-Cdc2 activity at lower viral doses when compared with AdWAF1. Adp27 is therefore potentially useful for studies of growth regulation and for gene therapy when growth inhibition is desired.