For isolation of mouse mtDNA-less (rho0) cell lines, we searched for various antimitochondrial drugs that were expected to decrease the mtDNA content and found that treatment with ditercalinium, an antitumor bis-intercalating agent, was extremely effective for completely excluding mtDNA in all the mouse cell lines we tested. The resulting rho0 mouse cells were successfully used for trapping the mtDNA of living nerve cells into dividing cultured cells by fusion of the rho0 cells with mouse brain synaptosomes, which represent synaptic endings isolated from nerve cells. With neuronal mtDNA obtained, all of the cybrid clones restored mitochondrial translation activity similarly regardless of whether the mtDNA was derived from young or aged mice, thus at least suggesting that defects in mitochondrial genomes are not involved in the age-associated mitochondrial dysfunction observed in the brain of aged mice. Furthermore, we could trap a very small amount of a common 5823-base pair deletion mutant mtDNA (DeltamtDNA5823) that was detectable by polymerase chain reaction in the cybrid clones. As the amount of mutant mtDNA with large scale deletions was expected to increase during prolonged cultivation of the cybrids, these cells should be available for establishment of mice containing the deletion mutant mtDNA.