The overzealous production of proinflammatory cytokines in sepsis can result in shock, multiorgan dysfunction, and even death. In this study, we assessed the role of monocyte chemoattractant protein-1 (MCP-1) as a mediator of sepsis in endotoxin-challenged mice. Intraperitoneal administration of LPS to CD-1 mice induced a substantial time-dependent increase in MCP-1 in plasma, lung, and liver. The passive immunization of mice with rabbit antimurine MCP-1 antiserum 2 h before endotoxin administration resulted in a striking increase in LPS-induced mortality from 10% in control animals to 65% in anti-MCP-1-treated animals. Importantly, the administration of anti-MCP-1 antibodies to endotoxin-challenged mice resulted in increases in peak TNF-alpha and IL-12 levels, and also in a trend toward decreased serum levels of IL-10. Conversely, the administration of recombinant murine MCP-1 intraperitoneally significantly protected mice from endotoxin-induced lethality, and resulted in an increase in IL-10 levels, a decrease in IL-12 levels, and a trend toward decreased levels of TNF. In conclusion, our findings indicate that MCP-1 is a protective cytokine expressed in murine endotoxemia, and does so by shifting the balance in favor of antiinflammatory cytokine expression in endotoxin-challenged animals.