Leptin's effects are mediated by interactions with a receptor that is alternatively spliced, resulting in at least five different murine forms: Ob-Ra, Ob-Rb, Ob-Rc, Ob-Rd, and Ob-Re. A mutation in one splice form, Ob-Rb, results in obesity in mice. Northern blots, RNase protection assays, and PCR indicate that Ob-Rb is expressed at a relatively high level in hypothalamus and low level in several other tissues. Ob-Ra is expressed ubiquitously, whereas Ob-Rc, -Rd, and -Re RNAs are only detectable using PCR. In hypothalamus, Ob-Rb is present in the arcuate, ventromedial, dorsomedial, and lateral hypothalamic nuclei but is not detectable in other brain regions. These nuclei are known to regulate food intake and body weight. The level of Ob-Rb in hypothalamus is reduced in mice rendered obese by gold thioglucose (GTG), which causes hypothalamic lesions. The obesity in GTG-treated mice is likely to be caused by ablation of Ob-Rb-expressing neurons, which results in leptin resistance.