Elevated levels of secretory type II phospholipase A2 (sPLA2-II) have been associated with a poor clinical outcome in the acute respiratory distress syndrome. This study identifies the cell source(s) and the mechanisms of sPLA2-II synthesis in the guinea pig model of acute respiratory distress syndrome induced by intratracheal injection of LPS. Administration of LPS led to an increase in lung membrane-associated calcium-dependent sPLA2 activity, which was abrogated by LY311727, a selective inhibitor of sPLA2-II. No sPLA2 activity was detected in the vascular compartment of the lung. LPS administration induced a parallel accumulation of sPLA2-II mRNA in lung tissues. In situ hybridization showed that sPLA2-II transcripts were synthesized in interstitial and alveolar macrophages (AM). Incubation of AM with LPS enhanced the expression of sPLA2-II mRNA, leading to stimulation of sPLA2-II synthesis and secretion. This increase was prevented by the addition of anti-TNF-alpha and anti-p55 TNF receptor Abs. Furthermore, the addition to AM of cellfree bronchoalveolar fluid collected from LPS-treated guinea pigs increased sPLA2-II expression, which was abrogated by anti-TNF-alpha Ab. These findings demonstrate that 1) macrophages are in vivo the major cell source of sPLA2-II in LPS-induced acute lung injury; 2) in contrast to that in other cell systems, regulation of LPS-induced sPLA2-II synthesis in AM is TNF-alpha dependent; and 3) production of TNF-alpha in the air-lung interface is an important step for sPLA2-II synthesis in macrophages.