Cholinesterases are serine hydrolases that can potentially be used as pretreatment drugs for organophosphate toxicity, as drugs to alleviate succinylcholine-induced apnea, and as detoxification agents for environmental toxins such as heroin and cocaine. The successful application of serum-derived cholinesterases as bioscavengers stems from their relatively long residence time in the circulation. To better understand the relationship between carbohydrate structure and the stability of cholinesterases in circulation, we determined the monosaccharide composition, the distribution of various oligosaccharides, and the structure of the major asparagine-linked oligosaccharides units present in fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase. Our findings indicate that 70-80% of the oligosaccharides in both enzymes are negatively charged. This finding together with the molar ratio of galactose to sialic acid clearly suggests that the beta-galactose residues are only partially capped with sialic acid, yet they displayed a long duration in circulation. The structures of the two major oligosaccharides from fetal bovine serum acetylcholinesterase and one major oligosaccharide from equine serum butyrylcholinesterase were determined. The three carbohydrate structures were of the biantennary complex type, but only the ones from fetal bovine serum acetylcholinesterase were fucosylated on the innermost N-acetylglucosamine residue of the core. Pharmacokinetic studies with native, desialylated, and deglycosylated forms of both enzymes indicate that the microheterogeneity in carbohydrate structure may be responsible, in part, for the multiphasic clearance of cholinesterases from the circulation of mice.