Harlequin ichthyosis (HI) is a severe congenital ichthyosis in which massively thickened stratum corneum with abnormal barrier function often results in death of affected newborns. Survivors evolve into a severe nonbullous ichthyosiform erythroderma. Previously we have ascertained three biochemical phenotypes of HI, based on abnormal profilaggrin and K6 and K16 expression in epidermis. Submerged cultures of HI keratinocytes differentiated abnormally, but the three phenotypes were indistinguishable in vitro. We hypothesized that differentiation in submerged culture was insufficient to reflect in vivo biochemical abnormalities or that dermal components might be necessary for expression. To test these hypotheses HI keratinocytes and fibroblasts (n = 3) were grown on collagen gels at the air-medium interface in a cross-over design with normal keratinocytes and fibroblasts. Epithelia derived from lifted cultures were studied by light microscopy and immunocytochemistry and extracted for western blot analysis. In contrast to our prediction, lifted cultures of HI keratinocytes formed a poorly differentiated epithelium, and normal keratinocytes formed an epidermal-like tissue with expression of K1 and expression and processing of profilaggrin to filaggrin. In addition, the presence of HI fibroblasts consistently altered differentiation of both HI and normal keratinocytes, resulting in less complete morphologic differentiation. The findings suggest that both epithelial and mesenchymal elements of the skin from HI are affected but that the primary abnormality lies in the keratinocytes.