Objectives: This study aims at clarifying the role of cellular Ca2+ overload and spontaneous sarcoplasmic reticulum (SR) Ca2+ release in the generation of early afterdepolarizations (EAD) by isoproterenol. The involvement of a Ca(2+)-activated membrane current in isoproterenol-induced EAD is investigated.
Methods: Membrane potential and contraction (an indicator of SR Ca2+ release) were recorded in canine left ventricular myocytes at pacing cycle lengths (CL) of 300-4000 ms. Threshold concentration for EAD was 20-50 mmol/l isoproterenol. Ni2+ (2.0-5.0 mmol/l) was used at normal and high (5.4 mmol/l) [Ca2+]o to examine the role of Ca2+ current and/or Na(+)-Ca2+ exchange (1Na-Ca) in EAD.
Results: In all cells delayed afterdepolarizations (DAD) appeared during isoproterenol. In most (approximately equal to 70%) cells EAD were also generated, which were fast-pacing dependent, occurring only at CL of 400-1000 ms. EAD were always initiated by a delay in repolarization. Early aftercontractions preceded the EAD upstrokes, often occurring without them. They coincided with the initial delays in repolarization. During treatment with isoproterenol, Ni2+ and high [Ca2+]o, EAD and DAD were suppressed despite the continued presence of early and delayed aftercontractions.
Conclusions: Our data indicate that beta-adrenergic EAD share a common ionic mechanism with DAD in terms of cellular Ca2+ overload and spontaneous SR Ca2+ release. beta-Adrenergic EAD consist of two phases: (1) a conditional phase coinciding with the onset of an early aftercontraction, often followed by (2) an EAD upstroke. A Ca2(+)-activated membrane current, probably I Na-Ca, is necessary at least for the initiation of these EAD.