Purpose: To assess the contrast-noise-ratio (CNR), and thus tumor conspicuity and delineation, on contrast-enhanced T1-weighted magnetization transfer (MT) images compared to conventional T1-weighted spin echo (SE) images as a strategy to improve definition of the macroscopic boost volume in radiosurgery treatment planning in patients with high grade gliomas or metastatic brain lesions.
Materials and methods: Fifty patients (mean age, 51 years) with histologically proven or suspected high grade glioma or cerebral metastases were prospectively examined by MR imaging. Following gadolinium dimeglumine administration (0.1 mmol/kg body weight) the brain was imaged with both a T1-weighted MT-fast low angle shot (FLASH) pulse sequence and with a conventional T1-weighted SE sequence without MT saturation. Lesion conspicuity, size and CNR were compared for both techniques.
Results: The mean tumor diameter of malignant gliomas was significantly (P < 0.01) larger when measured on T1-weighted MT-FLASH images compared to T1-weighted SE images and was comparable for metastatic lesions. The mean CNR of enhancing lesions on T1-weighted MT-FLASH was 14 +/- 5 compared to 10 +/- 4 on SE images, representing a significant (P < 0.05) improvement. Lesion conspicuity and delineation was improved in 10 of 20 patients (50%) with high grade gliomas and in 15 of 30 patients (50%) with metastases. Additional contrast enhancing lesions were detected in 8 of 30 patients (27%) with metastases on MT-FLASH images. Lesion conspicuity was markedly improved in the posterior fossa.
Discussion: Contrast-enhanced T1-weighted MT-FLASH images improve lesion detection and delineation in the planning process of radiosurgery in patients with intracranial high grade gliomas or metastases and may even alter the treatment approach.