Human alpha-thrombin inhibition by the highly selective compounds N-ethoxycarbonyl-D-Phe-Pro-alpha-azaLys p-nitrophenyl ester and N-carbobenzoxy-Pro-alpha-azaLys p-nitrophenyl ester: a kinetic, thermodynamic and X-ray crystallographic study

J Mol Biol. 1997 Jun 20;269(4):558-69. doi: 10.1006/jmbi.1997.1037.

Abstract

Kinetics, thermodynamics and structural aspects of human alpha-thrombin (thrombin) inhibition by newly synthesized low molecular weight derivatives of alpha-azalysine have been investigated. The thrombin catalyzed hydrolysis of N-ethoxycarbonyl-D-Phe-Pro-alpha-azaLys p-nitrophenyl ester (Eoc-D-Phe-Pro-azaLys-ONp) and N-carbobenzoxy-Pro-alpha-azaLys p-nitrophenyl ester (Cbz-Pro-azaLys-ONp) was investigated at pH 6.2 and 21.0 degrees C, and analyzed in parallel with that of N-alpha-(N,N-dimethylcarbamoyl)-alpha-azalysine p-nitrophenyl ester (Dmc-azaLys-ONp). Decarboxylation following the enzymatic hydrolysis of these p-nitrophenyl esters gave the corresponding 1-peptidyl-2(4-aminobutyl) hydrazines (peptidyl-Abh) showing properties of thrombin competitive inhibitors. Therefore, thermodynamics for the reversible binding of D-Phe-Pro-Abh, Cbz-Pro-Abh and Dmc-Abh to thrombin was examined. These results are consistent with the minimum four-step catalytic mechanism for product inhibition of serine proteinases. Eoc-D-Phe-Pro-azaLys-ONp and Eoc-D-Phe-Pro-Abh display a sub-micromolar affinity for thrombin together with a high selectivity versus homologous plasmatic and pancreatic serine proteinases acting on cationic substrates. The three-dimensional structures of the reversible non-covalent thrombin:Eoc-D-Phe-Pro-Abh and thrombin:Cbz-Pro-Abh complexes have been determined by X-ray crystallography at 2.0 A resolution (R-factor = 0.169 and 0.179, respectively), and analyzed in parallel with that of the thrombin:Dmc-azaLys acyl-enzyme adduct. Both Eoc-D-Phe-Pro-Abh and Cbz-Pro-Abh competitive inhibitors are accommodated in the thrombin active center, spanning the region between the aryl binding site and the S1 primary specificity subsite.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Crystallography, X-Ray
  • Humans
  • Hydrazines / pharmacology*
  • Kinetics
  • Oligopeptides / pharmacology*
  • Thermodynamics
  • Thrombin / antagonists & inhibitors*
  • Thrombin / chemistry*

Substances

  • Hydrazines
  • N-carbobenzoxy-prolyl-azalysine-4-nitrophenyl ester
  • N-ethoxycarbonyl-phenylalanyl-prolyl-alpha-azalysine 4-nitrophenyl ester
  • Oligopeptides
  • Thrombin