Matrix metalloproteinases (MMPs) play an important regulatory role in tissue morphogenesis, cell differentiation, tumor invasion and metastasis. Several authors have reported a direct correlation between the production of 72 kDa (MMP-2) and 92 kDa (MMP-9) type IV collagenases/gelatinases and the metastatic potential of cancer cells. Recently, we have identified the expression of both MMP-2 and MMP-9 in primary cultures of human giant cell tumor (GCT) of bone in vitro, and in tissue extracts in vivo. Interestingly, MMP-9 is not secreted by late-passaged GCT cells. It is possible that the production of MMP-9 is regulated by certain factor(s) secreted by the multinucleated giant cells in the primary culture. In order to test this hypothesis, the effect of primary-culture-conditioned medium on the expression of MMP-9 by late-passaged mononuclear stromal cells was examined. Adding conditioned medium from the primary GCT culture to the late-passaged stromal cells induced MMP-9, as evidenced by the presence of lytic bands at M(r) 92,000 and 72,000 on a gelatin zymogram. These enzyme activities were inhibited by EDTA, a well-known inhibitor of the MMPs. We confirmed these results by Western blotting using specific antibodies and RT-PCR for MMP-2 and MMP-9. Immunofluorescence studies with specific antibodies to MMP-9 further confirmed its expression by the passaged stromal cells cultured in the primary-culture-conditioned medium. The data indicate that MMP-2 and MMP-9 are produced by the mononuclear stromal cells when cultured in GCT primary-culture-conditioned medium. This suggests that multinucleated giant cells in primary cultures secrete a factor(s) that stimulates stromal cells to produce MMP-9, which, in turn, may contribute to the aggressive behavior of GCT.