Glial cells in primary mixed cultures or purified astrocyte cultures from mouse cortex respond to reduced extracellular calcium concentration ([Ca2+]e) with increases in intracellular calcium concentration ([Ca2+]i) that include single-cell Ca2+ oscillations and propagated intercellular Ca2+ waves. The rate and pattern of propagation of low [Ca2+]e-induced intercellular Ca2+ waves are altered by rapid perfusion of the extracellular medium, suggesting the involvement of an extracellular messenger in Ca2+ wave propagation. The low [Ca2+]e-induced Ca2+ response is abolished by thapsigargin and by the phospholipase antagonist U73122. The low [Ca2+]e-induced response is also blocked by replacement of extracellular Ca2+ with Ba2+, Zn2+, or Ni2+, and by 100 microM La3+. Glial cells in lowered [Ca2+]e (0.1-0.5 mM) show an increased [Ca2+]i response to bath application of ATP, whereas glial cells in increased [Ca2+]e (10-15 mM) show a decreased [Ca2+]i response to ATP. These results show that glial cells possess a mechanism for coupling between [Ca2+]e and the release of Ca2+ from intracellular stores. This mechanism may be involved in glial responses to the extracellular environment and may be important in pathological conditions associated with low extracellular Ca2+ such as seizures or ischemia.