The hydrolysis of enkephalin (Enk) congeners by the isolated N- (N-ACE) and C-domain of angiotensin I converting enzyme (ACE) and by the two-domain somatic ACE was investigated. Both Leu5- and Met5-Enk were cleaved faster by the C-domain than by N-ACE; rates with somatic ACE were 1600 and 2500 nmol/min/nmol enzyme with both active sites being involved. Substitution of Gly2 by D-Ala2 reduced the rate to 1/3rd to 1/7th of that of the Enks. N-ACE cleaved Met5-Enk-Arg6-Phe7 faster than the C-domain, probably with the highest turnover number of any naturally occurring ACE substrate (7600 min(-1)). This heptapeptide is also hydrolyzed in the absence of Cl-, but the activation by Cl- is unique; Cl- enhances the hydrolysis of the heptapeptide by N-ACE but inhibits it by the C-domain, yielding about a 5-fold difference in the turnover number at physiological pH. This difference may result in the predominant role of the N-domain in converting Met5-Enk-Arg6-Phe7 to Enk in vivo.