Some receptor tyrosine kinases such as the receptors for epidermal-growth factor (EGF) and platelet-derived growth factor undergo polyubiquitination as a consequence of ligand binding. The EGF receptor is also ubiquitinated by treatment with herbimycin A, an ansamycin antibiotic widely used as a tyrosine kinase inhibitor. To investigate the mechanism of the receptor ubiquitination, we have established an assay system in which herbimycin-A-induced ubiquitination processes can be analyzed in vitro. We now show that herbimycin A treatment of the purified EGF receptor induces polyubiquitination of the receptor in rabbit-reticulocyte lysate. Both DEAE unadsorbed material (fraction I) and high salt eluate (fraction II) of the reticulocyte lysate are involved cooperatively in the ubiquitination process, where the ubiquitin-conjugating enzyme UBC4 can functionally substitute for fraction I. A ubiquitin-protein ligase-like activity, partially purified from fraction II by DEAE anion-exchange chromatography, also functions in concert with UBC4. The precise mechanism of herbimycin A-induced ubiquitination of the EGF receptor is not fully understood, however, our present findings suggest that direct interaction with herbimycin A results in some modification of the receptor which is recognized by the ubiquitin-conjugating system in rabbit-reticulocyte lysate.