The participation of nitric oxide and vasoactive intestinal peptide (VIP) in the neurogenic regulation of bovine cerebral arteries was investigated. Nitrergic nerve fibers and ganglion-like groups of neurons were revealed by NADPH-diaphorase staining in the adventitial layer of bovine cerebral arteries. NADPH diaphorase also was present in endothelial cells but not in the smooth muscle layer. Double immunolabeling for neuronal nitric oxide synthase and VIP indicated that both molecules co-localized in the same nerve fibers in these vessels. Transmural nerve stimulation (200 mA, 0.2 milliseconds, 1 to 8 Hz) of endothelium-denuded bovine cerebral artery rings precontracted with prostaglandin F2 alpha, produced tetrodotoxin-sensitive relaxations that were completely suppressed by NG-nitro-L-arginine methyl ester (L-NAME) and by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline (ODQ), but were not affected by the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ 22,536), nor by VIP tachyphylaxis induced by pretreatment with 1 mumol/L VIP. Transmural nerve stimulation also elicited increases in intracellular cyclic GMP concentration, which were prevented by L-NAME, and small decreases in intracellular cyclic AMP concentration. Addition of VIP to bovine cerebral artery rings without endothelium produced a concentration-dependent relaxation that was partially inhibited by L-NAME, ODQ, and SQ 22,536. The effects of L-NAME and SQ 22,536 were additive. VIP induced a transient increase in intracellular cyclic GMP concentration, which was maximal 1 minute after VIP addition, when the highest relaxation rate was observed, and which was blocked by L-NAME. It is concluded that nitric oxide produced by perivascular neurons and nerve fibers fully accounts for the experimental neurogenic relaxation of bovine cerebral arteries and that VIP, which also is present in the same perivascular fibers, acts as a neuromodulator by activating neuronal nitric oxide synthase.