The environmental contaminants 1- and 3-nitrobenzo[a]pyrene (1- and 3-nitro-BaP) are mutagens in Chinese hamster ovary (CHO) cells with exogenous metabolic activation. Previous studies demonstrated the potent direct-acting mutagenicity of the oxidized metabolites, trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-1-nitrobenzo[a] pyrene (1-NBaPDE) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9, 10-tetrahydro-3-nitrobenzo[a]pyrene (3-NBaPDE), and the partially nitroreduced metabolites, 1- and 3-nitrosobenzo[a]pyrene (1- and 3-NO-BaP). In this study, we have identified the major adduct formed by incubation of calf thymus DNA with 1-NBaPDE and used this standard in conjunction with other adduct standards to characterize the 32P-postlabeled DNA adducts produced by 1- and 3-nitro-BaP metabolites in CHO cultures. The major adduct from 1-NBaPDE exposure was 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-1- nitrobenzo[a]pyrene; from 3-NBaPDE, 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-3- nitrobenzo[a]pyrene; from 1-NO-BaP, 6-(deoxyguanosin-N2-yl)-1-aminobenzo[a]pyrene; and from 3-NO-BaP, 6-(deoxyguanosin-N2-yl)-3-aminobenzo[a]pyrene. For comparison, the adducts formed by trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene and the related nitroreduced derivative 6-nitrosobenzo[a]pyrene were also examined. The nitrobenzo[a]pyrene DNA adducts described in this study are proposed to be involved in the mutagenicity of 1- and 3-nitro-BaP upon either oxidative or reductive metabolism.