Zinc finger proteins of the Cys2His2 class represent a large group of DNA-binding proteins. A major subfamily of those proteins, the Krüppel-associated box (KRAB) domain-containing Cys2His2-zinc finger proteins, have been described as potent transcriptional repressors. So far, however, no DNA-binding sites for KRAB domain-containing zinc finger proteins have been isolated. Using a polymerase chain reaction-based selection strategy with double- and single-stranded DNA, we failed to reveal a binding site for Kid-1, one member of KRAB-zinc finger proteins. Binding of Kid-1 both to single- and homoduplex double-stranded DNA was negligible. We now present evidence that Kid-1 binds to heteroduplex DNA. Similar to Kid-1, the non-KRAB-zinc finger protein WT1 also bound avidly to heteroduplex DNA (both the -KTS and +KTS splice variant of WT1), whereas the POU domain protein Oct-6, the ets domain protein Ets-1 and the RING finger of BRCA-1 did not bind to heteroduplex DNA. Binding of WT1 to heteroduplex DNA was markedly reduced in naturally occurring mutants. The recognition of certain DNA structures by transcriptional repressor proteins may therefore represent a more common phenomenon than previously thought.