Aims: The effects of a cardioverter/defibrillator system with an electrically active generator can, applied without recourse to thoracotomy, have not been investigated in the abdominal position in humans. The purpose of this acute clinical study was to evaluate the defibrillation efficacy of an abdominally positioned hot can electrode in connection with a single lead endocardial defibrillation system.
Patients and methods: Thirty consecutive patients undergoing implantation of a cardioverter/defibrillator or pulse generator replacement were enrolled in this study Each patient received an integrated, tripolar single-lead system. This was tested using an asymmetrical biphasic defibrillation waveform with constant energy delivery. Defibrillation energy, peak voltage, peak current and impedance were compared between two electrode configurations: (A) in this configuration the distal right ventricular coil was negative and the proximal coil positive; (B) in this configuration the distal right ventricular coil was negative and the proximal coil and the abdominal hot can (65 ccm), as common anode, were positive. Defibrillation threshold testing started at 15 J with stepwise energy reduction (10 J, 8 J, 5 J and 3 J) until defibrillation was ineffective.
Results: Compared to the single-lead configuration, the abdominal hot can configuration revealed at 17.5% reduction in defibrillation energy requirements (8.6 J +/- 4.3 J vs 10.43 J +/- 3.9 J; P = 0.041), a 15.7% reduction in peak voltage (308.6 V +/- 63 V vs 365.3 V +/- 68 V; P = 0.003), and a 21.6% reduction in impedance (41.1 omega +/- 6.3 omega vs 52.4 omega +/- 6.6 omega; P < 0.001). Peak current showed a significant increase during hot can testing of 8.2% (7.2 A +/- 1.8 A vs 7.8 A +/- 2.2 A; P = 0.16).
Conclusion: An abdominally placed hot can pulse generator lowered defibrillation energy requirements in patients with an endocardial defibrillation lead system.