Neuropilin is a neuronal cell surface protein and has been shown to function as a receptor for a secreted protein, semaphorin III/D, that can induce neuronal growth cone collapse and repulsion of neurites in vitro. The roles of neuropilin in vivo, however, are unknown. Here, we report that neuropilin-deficient mutant mice produced by targeted disruption of the neuropilin gene show severe abnormalities in the trajectory of efferent fibers of the PNS. We also describe that neuropilin-deprived dorsal root ganglion neurons are perfectly protected from growth cone collapse elicited by semaphorin III/D. Our results indicate that neuropilin-semaphorin III/D-mediated chemorepulsive signals play a major role in guidance of PNS efferents.