Cryptosporidium parvum infects intestinal epithelial cells and does not invade deeper layers of the intestinal mucosa. Nonetheless, an inflammatory cell infiltrate that consists of neutrophils and mononuclear cells is often present in the lamina propria, which underlies the epithelium. This study investigated the host epithelial cell response to C. parvum by assessing in vitro and in vivo the expression and production of proinflammatory cytokines by intestinal epithelial cells after infection. The human colon epithelial cell lines HCT-8 and Caco-2 and human intestinal xenografts in SCID mice were infected with C. parvum. The expression and secretion of the C-X-C chemokines interleukin-8 (IL-8) and GROalpha were determined by reverse transcription-PCR analysis and enzyme-linked immunosorbent assay. Our results demonstrate that upregulated expression and secretion of IL-8 and GROalpha after C. parvum infection of intestinal epithelial cells first occurred 16 to 24 h after infection and increased over the ensuing 1 to 2 days. The kinetics of C-X-C chemokine production by C. parvum-infected epithelial cells contrast markedly with the rapid but transient expression of C-X-C chemokines by epithelial cells infected with invasive enteric bacteria. C-X-C chemokine secretion in C. parvum-infected epithelial cells occurred predominantly from the basolateral surface in polarized monolayers of Caco-2 cells grown in Transwell cultures, whereas cell lysis occurred at the apical surface. The basolateral secretion of IL-8 and GROalpha from C. parvum-infected epithelial cells suggests that C-X-C chemokines produced by those cells contribute to the mucosal inflammatory cell infiltrate in the underlying intestinal mucosa.