Heparin-binding epidermal-growth-factor-like growth factor (HB-EGF) is a potent mitogen for smooth-muscle cells (SMCs) belonging to the EGF family. We have previously determined that HB-EGF is expressed in macrophages and SMCs of human atherosclerotic lesions and that its membrane-anchored precursor, proHB-EGF, also has a juxtacrine mitogenic activity which is markedly enhanced by CD9, a surface marker of lymphohaemopoietic cells. Therefore, when both proHB-EGF and CD9 are expressed on macrophages, they may strongly promote the development of atherosclerosis. In the present study we have investigated the changes in proHB-EGF and CD9 in THP-1 cells during differentiation into macrophages and by the addition of oxidized low-density lipoproteins (OxLDL) and assessed juxtacrine growth activity of THP-1 macrophages for human aortic SMCs. HB-EGF and CD9 at both the mRNA and the protein level were up-regulated after differentiation into macrophages, and further expression of HB-EGF was induced by the addition of OxLDL or lysophosphatidylcholine. Juxtacrine induction by formalin-fixed growth was suppressed to control levels by an inhibitor of HB-EGF and was partially decreased by anti-CD9 antibodies. These results suggest that co-expression of proHB-EGF and CD9 on macrophages plays an important role in the development of atherosclerosis by a juxtacrine mechanism.