The effect of opportunistic infections (OI) on immune-compromised populations has been known for decades, but the recent AIDS epidemic has sparked renewed interest in the development of new anti-OI agents. The mechanism of action of a series of cationic unfused-aromatic anti-OI drugs is believed to involve binding of the drug to AT sequences in the minor groove of DNA. Some new anti-OI drug candidates have been synthesized with fused aromatic ring systems (e.g. carbazoles) that do not resemble the classical paradigm for minor-groove interactions at AT sequences in DNA. To characterize the DNA interactions of these compounds, we have used UV-vis absorbance, fluorescence, kinetic measurements, and circular dichroism in conjunction with NMR spectroscopy to evaluate the structure of the complexes formed between the carbazoles and DNA. Application of these methods to carbazoles substituted at either the 3,6 or 2,7 positions with cationic imidazoline groups gave conclusive, but very surprising, evidence that both compounds bind strongly in the minor groove at AT DNA sequences. NMR and molecular modeling of the complexes formed between the 3,6- and 2,7-carbazoles and the self-complementary oligomer d(GCGAATTCGC) have been used to establish structural details for the minor-groove complex. These results have been used as constraints for molecular modeling calculations to construct models of the minor-groove-carbazole complexes and to draw conclusions regarding the molecular basis for the effects of substituent position on carbazole-DNA affinities. The surprising result is that the 2,7 carbazole binds in AT sequences with hydrogen bonds involving one imidazoline group and the carbazole NH. The 3,6-carbazole compound binds in a more "classical" model that uses both imidazoline groups for H-bonding while the carbazole NH points out of the minor groove. The carbazoles thus form a new type of DNA minor groove complex and their excellent biological activities indicate that a variety of fused-ring minor-groove binding agents should be investigated.