Gonadotrophin-releasing hormone (GnRH) is the central regulator of the reproductive system and its analogues are used widely in the treatment of diverse diseases. The GnRH receptor is a member of the large family of G-protein-coupled receptors (GPCRs) which have seven transmembrane domains. Knowledge of these receptors has assisted the development of molecular models of the GnRH receptor that allow prediction of its three-dimensional configuration and the way GnRH binds and activates its receptor. Comparison with other GPCRs led to the discovery that Lys121, in the third transmembrane domain, has a role in agonist binding. The history of GnRH structure-activity studies has allowed the identification of an acidic residue in the third extracellular loop of the receptor that is required for binding of mammalian GnRH, while synthetic GnRH analogues have showed that Asn102, in the second extracellular loop, may interact with the carboxy-terminus of GnRH. These residues can now be incorporated into the receptor models that are being used to design orally active non-peptide GnRH analogues for contraception and treatment of a variety of reproductive disorders.