Background: Induction of tolerance with anti-CD4 has mainly focused on monoclonal antibodies (mAbs) that deplete CD4+ T cells. In this study, the mechanisms by which nondepleting anti-CD4 mAbs induce tolerance in the Dark Agouti to PVG rat heart graft model were examined.
Methods: Five anti-CD4 mAbs were tested. Immunohistology and cytokine mRNA profiles were analyzed within grafts. Effects of combining anti-CD4 therapy with alloantibody (alloAb), interleukin (IL)-4, and anti-IL-4 mAb were also examined.
Results: All mAbs tested induced indefinite graft survival (>150 days), with blocking of alloAb production. Exogenous alloAb did not restore rejection. Similar T cell receptor alphabeta+, CD8+, IL-2 receptor+ T cell, macrophage, and natural killer cell infiltration and comparable MHC II and intercellular adhesion molecule-1 levels were seen in rejecting and tolerant grafts. mRNA for IL-2, interferon-gamma, lymphotoxin, tumor necrosis factor-alpha, transforming growth factor-beta, cytolysin, and granzyme-A/B was comparable, although inducible nitric oxide synthase was slightly reduced in tolerant grafts. IL-4 and IL-5 were significantly reduced in tolerant grafts, although IL-6, IL-10, and IL-13 levels were similar; this was consistent with partial T helper (Th)2 response inhibition, which was also manifested by inhibited alloAb. The combination of alloAb, IL-4, or anti-IL-4 mAb with anti-CD4 did not prevent tolerance induction.
Conclusions: This study demonstrated that anti-CD4 mAb therapy did not inhibit activation and infiltration of Th1 and CD8+ effector T cells. Preferential induction of Th2 responses, especially IL-4, was not essential for the induction of tolerance. Our studies also found no evidence to support induction of anergy or transforming growth factor-beta as mechanisms of tolerance induction. These results question whether IL-4 is required for induction of transplantation tolerance.