Wallerian degeneration of the peripheral nervous system was studied in ICAM-1-deficient mice and compared with the phenomena observed in C57BL wild-type animals. There was a decrease in myelin density in both mice strains 4 and 6 days after transection of the sciatic nerve. The degenerating nerves were invaded by Mac-1-, LFA-1-, and F4/80-positive macrophages; significantly lower numbers of macrophages were present in ICAM-1-deficient nerves. Myelin loss decreased after nerve transection with a more prominent loss in ICAM-1-deficient animals. Schwann cells revealed a much higher myelin load in these animals when compared with wild-type nerves, and there was an increased proliferation of endoneurial cells in ICAM-1-deficient mice. These data indicate that ICAM-1 is involved in macrophage recruitment to injured peripheral nerves as well as in the proliferative and phagocytic response of Schwann cells after peripheral nerve transection.