Purpose: To evaluate the effect of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) on bone marrow glucose metabolism in rodents and in patients, as assessed by 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) uptake measured directly or by positron-emission tomography (PET) scanning.
Materials and methods: Groups of three rats received either daily saline, G-CSF, or GM-CSF injections for 7 days. After treatment, FDG was injected and F-18 activities in tissues measured 1 hour later. Twenty-two breast cancer patients treated with multiagent chemotherapy were sequentially studied with PET. Eleven patients received G-CSF therapy as an adjunct to chemotherapy, while 11 received chemotherapy only. The standardized uptake value-lean (SUL) of bone marrow FDG uptake was measured and compared.
Results: In rats, bone marrow F-18 activity was significantly higher in both CSF groups than in the saline group (G-CSF, 0.44 +/- 0.08; GM-CSF, 0.33 +/- 0.02; saline, 0.18 +/- 0.02% injected dose [ID]/g x kg; P < .05), but the other normal tissues had comparable biodistributions to controls. In breast cancer patients, the FDG uptake of bone marrow did not change with chemotherapy alone; however, marrow uptake was increased after treatment with G-CSF. The dose of G-CSF and duration of treatment were correlated with the extent of increase in FDG uptake. The SUL of bone marrow was as follows: baseline, 1.56 +/- 0.23; after one cycle, 3.13 +/- 1.40 (P < .01); after two cycles, 2.22 +/- 0.85 (P < .05); and after three cycles, 2.14 +/- 0.79 (P < .05), respectively. Although the FDG uptake of bone marrow declined after G-CSF treatment was completed, it was higher than the baseline level for up to 4 weeks postcompletion of G-CSF and the elevated marrow FDG uptake was sustained longer than the period of blood neutrophil count elevation.
Conclusion: Substantial increases in bone marrow FDG uptake are rapidly induced by CSF treatments and should not be misinterpreted as diffuse bone marrow metastases.