Peptides containing the integrin recognition sequence, RGD, can inhibit experimental metastasis of mouse melanoma cells, but the integrin(s) affected in these experiments is unknown. Besides "classical" RGD-binding integrins such as alpha 5 beta 1 and alpha v beta 3, RGD has been reported to bind alpha 4 beta 1, and mAbs to alpha 4 beta 1 can inhibit melanoma metastasis. We investigated the mode of action of the disintegrin eristostatin, an RGD-containing peptide isolated from snake venom, in a human melanoma experimental metastasis model. Lung colonization following i.v. injection of MV3 cells in nude mice was strongly inhibited by eristostatin. MV3 cells bound FITC-eristostatin and adhered to eristostatin-coated wells. This adhesion was partially inhibited by a GRGDSP peptide and by alpha 4 mAb. Binding of FITC-eristostatin to Jurkat cells and adhesion of Jurkat (but not K562) cells to eristostatin-coated wells further suggested that eristostatin binds alpha 4 beta 1, even though, again, alpha 4 mAb only partially inhibited adhesion. Expression of alpha 4 beta 1 was enhanced in metastatic melanoma cells compared to normal melanocytes and nonmetastatic melanoma cells. Finally, eristostatin inhibited adhesion of both MV3 and CHO alpha 4 cells to the alpha 4 beta 1-ligand VCAM-1, while adhesion to other ligands via other integrins was not affected. These findings demonstrate that inhibition of melanoma cell metastasis by RGD-containing peptides such as eristostatin, may be due to interference with alpha 4 beta 1-VCAM binding, in addition to inhibition of the classical RGD-binding integrins.