Mechanisms mediating the increase in gastric mucosal blood flow (GMBF) induced by the stable thyrotropin-releasing hormone (TRH) analog RX-77368 injected intracisternally at a gastric acid secretory dose (30 ng) were investigated using hydrogen gas clearance in urethan-anesthetized rats. The histamine H1 receptor antagonist pyrilamine (intravenously), capsaicin (subcutaneously, 10 days), and NG-nitro-L-arginine methyl ester (L-NAME, intracisternally) failed to impair the 150% rise in GMBF induced by intracisternal injection of RX-77368. By contrast, atropine (subcutaneously) and NG-monomethyl-L-arginine (intravenously) completely inhibited the increase in GMBF evoked by intracisternal RX-77368. L-NAME (intravenously) blocked the intracisternal RX-77368-induced increase in GMBF in capsaicin-pretreated rats, and the L-NAME effect was reversed by intravenous L- but not D-arginine. These findings indicate that vagal efferent activation induced by TRH analog injected intracisternally at a gastric acid secretory dose increases GMBF through atropine-sensitive mechanisms stimulating L-arginine-nitric oxide pathways, whereas H1 receptors and capsaicin-sensitive afferent fibers do not play a role.