Comparisons of the developing human sympathetic nervous system (SNS) to tumors presumed to derive from these cells may suggest tumor progenitors and predict tumor biologic behavior. Classic neuroblastoma (NB) and its more highly differentiated stroma-rich subtypes, extra-adrenal sympathetic paraganglioma, and pheochromocytoma were examined for the presence of the developmentally characterized gene products NSE, S-100, CD44, Bcl-2, HNK-1, PNMT, TrkA, IGF2, and tyrosine hydroxylase. The marker gene expression profiles of these tumors were compared with those similarly determined for a number of normal prenatal and postnatal human SNS cell types. Sympathetic paraganglioma, pheochromocytoma, and stroma-rich NB display marker expression profiles mimicking those of childhood sympathetic paraganglia, adrenal chromaffin cells, and sympathetic neurons, respectively. A selection of differentiating, extra-adrenal NB tumors with prognostically favorable features possess marker gene expression profiles paralleling that observed for fetal extra-adrenal sympathetic paraganglia/small intensely fluorescent cells. In contrast, undifferentiated, clinically aggressive NB tumors manifest characteristics mirroring that of embryonic/early fetal sympathetic neuroblasts of sympathetic ganglia and of the adrenal gland. These findings suggest that clinical features, such as primary tumor location and age at diagnosis, provide prognostic information for NB patients by virtue of the existence and biology of the presumed tumor progenitor cell type.